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Abstract

A simple isoparametric assumed strain finite element formulation incorporating a third-order polynomial
displacement model for the buckling and vibration analysis of initially stressed composite sandwich
laminates is presented. The displacement model involves a nonlinear distribution of in-plane displacements
through the plate thickness; the theory does not require shear correction coefficients. A nine-noded
quadratic Lagrangian two-dimensional element is used with three displacements, two rotations of the
normals about the plate midplane, and two warps of the normals. Full integration is carried out to evaluate
various terms in the energy formulation. A consistent mass matrix is employed to preserve the total kinetic
energy of the system. The accuracy of the present formulation is verified with the existing results in the
literature. Numerical results are presented for the stability and free vibration of initially stressed composite
sandwich plates.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Composite sandwich plates are utilized in many weight-sensitive applications, where they have
many advantages relative to traditional isotropic materials. However, during their build and
fabrication, sandwich structures are subjected to various inplane loads which can lead to rapid
failure. Hence the effects of initial stresses on the stability and vibration response of composite
sandwich plates have become an active field of research in recent years.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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To simulate such above-mentioned critical situations adequately, three-dimensional analysis
methods [1–10] are used to get the exact results, usually at very high computational costs. Two-
dimensional models, however, are preferred in practical situations: in these the number of
displacement variables is kept constant and independent of the number of constitutive layers. It is
quite well known that the classical laminate plate theory (CLPT) based on the Kirchhoff–Love
hypothesis is inadequate for thicker plates and gives satisfactory results only for thin laminates [9].
Hence, a variety of refined shear deformable plate theories are proposed to model both thin and
thick plates in a single formulation. The first-order shear deformation theory (FSDT) on
Mindlin–Reissner assumptions requires the use of either constant (FSDTC) [11] or variable
(FSDTV) shear correction factors. These can be calculated from shear strain energy [12],
complementary shear energy [13] and predictor–corrector methods [6]. To circumvent the above
difficulties, several approaches to extend FSDT either to the higher-order shear deformation
theories (HSDT) [10,14–17] or to Reissner–Mindlin zig-zag interlaminar continuity (RMZC)
[1–4,18] formulations have been proposed. The historical reviews on the zig-zag model [1–3] show
that three independent approaches, namely Lekhnitskii Multilayered Theory (LMT), Ambartsu-
mian Multilayered Theory (AMT) and Reissner Multilayered Theory (RMT), are available. In the
context of the buckling of antisymmetric cross-ply and angle-ply laminates, it is found that true
buckling cannot occur in most of the cases [19]. Also, closed-form solutions of the above-
mentioned theories can be obtained in only a few cases. Thus, in order to solve a wide class of
problems, a numerical scheme such as the finite element method is preferred.

Various finite element models are available for CLPT, FSDT, HSDT, RMZC and other shear
deformable theories on composite sandwich plates. Finite element models of the CLPT [9] and
HSDT [15,16] with vanishing shear stresses at the top and bottom surfaces of the plates require C1

continuity. This complicates the development of conforming elements and inhibits their use with
other commonly used finite elements. In contrast, finite elements based on FSDT [11], HSDT with
polynomial displacement models [20,21] and RMZC [1–4] require only C0 continuity of all
primary variables. Again, both CLPT [9] and FSDTC [11] are inadequate for composite sandwich
plates. Hence, to use the finite elements in FSDTV [6,12,13], HSDT with polynomial models
[20,21] and RMZC [1–4], a great deal of care is needed to solve the problem with complete
confidence. The ideal finite elements [9] to be used in any analysis should converge, not lock,
contain no mechanisms, be insensitive to element distortions and be easy to implement and use.
One of the popular methods used to develop versatile Mindlin plate elements is the assumed strain
concept [22–24]. Most recently, a four-node assumed strain RMZC finite element [1–4] has been
used to analyse laminated composite plates. Also, the present authors developed a family of C0

assumed strain four- and nine-node Lagrange plate finite elements [25–27] based on a refined form
of Reddy’s higher-order theory which combines FSDTC, FSDTV and third-order theory in a
single formulation. From the numerical experiments, it is found that these higher-order elements
converge to assumed strain Mindlin plate elements [22–24] by neglecting the in-plane and higher-
order terms from the formulation. It can also be stated that both RMZC [1–4]and the present
approach [25–27] could be successfully applied to tackle the complex problems in practice. On the
vibration of initially stressed sandwich, a finite element model has been developed [28] to validate
the experimental results on the natural frequencies and loss factors of initially stressed, damped
sandwich beams. A number of finite element formulations based on several theories [1–10,29,30]
can be found to analyse buckling and vibration of laminated composite and sandwich panels.
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As can be seen from the literature review, apart from the work by Rao et al. [28], the vibration
behaviour of composite sandwich plates subjected to various in-plane loads has received very little
attention. It can also be observed that the buckling and vibration analysis of initially stressed
composite sandwich plates with the use of a family of assumed strain shear deformable finite
elements is not attempted so far to the best of the authors’ knowledge. In the present study, a new
nine-node assumed strain plate bending element is developed based on a refined form of Reddy’s
higher-order theory by incorporating the terms associated with the geometric stiffness matrix,
which is not covered in the earlier analyses [25–27]. Hence, the focus of this paper is a numerical
study of the buckling and vibration behaviour of prestressed sandwich plates.
2. Formulation of the problem

The present HSDT [25–27] is developed on the basis of the assumed displacement field in the
following form (see Fig. 1):

ua ¼ u0
a þ zCa �

4z3

3h2
fa; w ¼ w0, (1)

where the superscript zero denotes the middle surface displacements;Ca are the rotations about the
a axes; fa are the warping functions; h is the thickness of the plate; Greek subscripts range on x
and y; ua are the displacements of a point in the a axes; and w is the displacement in the z-direction.
The reason for selecting the displacement field in Eq. (1) is to keep the computing cost minimum in
the present analysis. For other forms of HSDT with polynomial models, see Refs. [14,20,21].

The strain–displacement relations of the higher-order theory are obtained from Eq. (1), which
can be stated as

�ab ¼ �0ab þ zk0
ab þ z3k2

ab; �0ab ¼
1

2
ðu0

a;b þ u0
b;aÞ; k0

ab ¼
1

2
ðCa;b þCb;aÞ,
θ

x

y

z

h
b

skin

skin

core

a

Fig. 1. A typical sandwich plate geometry with laminate reference axes, and fiber orientation.
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k2
ab ¼

1

2

�4

3h2

� �
ðCa;b þCb;aÞ,

ga ¼ gs
a þ z2ks

a; gs
a ¼ 2�az ¼ w;a þCa; ks

a ¼
�4

h2

� �
fa. ð2Þ

The stress–strain relations for the lamina in the laminate coordinates ðx; y; zÞ are given by

sxx ¼ Q11�xx þ Q12�yy þ 2Q16�xy; syy ¼ Q12�xx þ Q22�yy þ 2Q26�xy,

sxy ¼ Q16�xx þ Q26�yy þ 2Q66�xy; sxz ¼ 2Q55�xz þ 2Q54�yz; syz ¼ 2Q45�xz þ 2Q44�yz, ð3Þ

where Qij are the transformed plane stress reduced elastic stiffness coefficients, which are
given as,

Q11 ¼ Q11c4 þ 2ðQ12 þ 2Q66Þc
2s2 þ Q22s4,

Q12 ¼ ðQ11 þ Q22 � 4Q66Þc
2s2 þ Q12ðc

4 þ s4Þ,

Q16 ¼ ðQ11c2 þ ðQ12 þ 2Q66Þðs
2 � c2Þ � Q22s2Þcs,

Q22 ¼ Q11s4 þ 2ðQ12 þ 2Q66Þc
2s2 þ Q22c4,

Q26 ¼ ðQ11s2 þ ðQ12 þ 2Q66Þðc
2 � s2Þ � Q22c2Þcs,

Q66 ¼ ðQ11 þ Q22 � 2Q12Þc
2s2 þ Q66ðc

2 � s2Þ2, ð4Þ

where ½Qij�k is the constitutive matrix at lamina level; c ¼ cos y; s ¼ sin y; y is the angle
between the lamina x-axis and lamina principal xi-axis. Q11 ¼ E1=ð1� n12n21Þ; Q12 ¼

ðn12E2Þ=ð1� n12n21Þ; Q22 ¼ E2=ð1� n12n21Þ; Q66 ¼ G12; Q55 ¼ G13; Q44 ¼ G23 in which Ei

is the xi-axis elastic modulus; nij is the i–j plane Poisson ratio; Gij is the i–j plane shear
modulus.

The equations of motion associated with the displacement field in Eq. (1) are

Nxx;x þ Nxy;y ¼ I1
€u0
x þ I2

€Cx þ
�4I4

3h2

� �
€fx,

Nxy;x þ Nyy;y ¼ I1
€u0
y þ I2

€Cy þ
�4I4

3h2

� �
€fy,

Qxx;x þ Qyy;y þ q þ Nxxw0
;xx þ 2Nxyw0

;xy þ Nyyw0
;yy ¼ I1

€w0,

Mxx;x þ Mxy;y � Qxx ¼ I2
€u0
x þ I3

€Cx þ
�4I5

3h2

� �
€fx,

Mxy;x þ Myy;y � Qyy ¼ I2
€u0
y þ I3

€Cy þ
�4I5

3h2

� �
€fy,

�4

3h2

� �
ðPxx;x þ Pxy;yÞ þ

4Rxx

h2
¼

�4I4

3h2

� �
€u0
x þ

�4I5

3h2

� �
€Cx þ

16I7

9h4

� �
€fx,

�4

3h2

� �
ðPxy;x þ Pyy;yÞ þ

4Ryy

h2
¼

�4I4

3h2

� �
€u0
y þ

�4I5

3h2

� �
€Cy þ

16I7

9h4

� �
€fy. ð5Þ
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The boundary conditions are of the following form:
On the edge with a constant value of x:

u0
x ¼ u0

x or Nxx ¼ Nxx; u0
y ¼ u0

y or Nxy ¼ Nxy; w0 ¼ w0 or Qxx ¼ Qxx,

Cx ¼ Cx or Mxx ¼ Mxx; Cy ¼ Cy or Mxy ¼ Mxy; fx ¼ fx or Pxx ¼ Pxx,

fy ¼ fy or Pxy ¼ Pxy.

On the edge with a constant value of y:

u0
x ¼ u0

x or Nxy ¼ Nxy; u0
y ¼ u0

y or Nyy ¼ Nyy; w0 ¼ w0 or Qyy ¼ Qyy,

Cx ¼ Cx or Mxy ¼ Mxy; Cy ¼ Cy or Myy ¼ Myy; fx ¼ fx or Pxy ¼ Pxy,

fy ¼ fy or Pyy ¼ Pyy.

The various stress resultants are given by

Nxx Mxx Pxx

Nyy Myy Pyy

Nxy Mxy Pxy

2
64

3
75 ¼

Xnl

k¼1

Z zk

zk�1

sxx

syy

sxy

8><
>:

9>=
>;ð1; z; z2Þdz, (6a)

Qxx Rxx

Qyy Ryy

" #
¼

Xnl

k¼1

Z zk

zk�1

txz

tyz

( )
ð1; z2Þdz, (6b)

where nl is the number of the layer.
Upon simplification, the stress resultants are stated as

N ¼ ½A��0ab þ ½B�k0
ab þ ½E�k2

ab,

M ¼ ½B��0ab þ ½D�k0
ab þ ½F �k2

ab,

P ¼ ½E��0ab þ ½F �k0
ab þ ½H�k2

ab,

Q ¼ ½A�sgs
a þ ½D�sks

a,

R ¼ ½D�sgs
a þ ½F �sks

a, ð6cÞ

where

N ¼ ðNxx Nyy NxyÞ
T; M ¼ ðMxx Myy MxyÞ

T,

P ¼ ðPxx Pyy PxyÞ
T; Q ¼ ðQxx QyyÞ

T; R ¼ ðRxx RyyÞ
T,

ðAij ;Bij ;Dij ;Eij;Fij;HijÞ ¼
Xnl

k¼1

Z zk

zk�1

ðQijÞkð1; z; z
2; z3; z4; z6Þdz; i; j ¼ 1; 2; 6,

ðAs
ij ;D

s
ij ;F

s
ijÞ ¼

Xnl

k¼1

Z zk

zk�1

ðQijÞkð1; z
2; z4Þdz; i; j ¼ 5; 4. ð7Þ
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The inertias I i ði ¼ 1; 2; 3; 4; 5; 7Þ are defined by

ðI1; I2; I3; I4; I5; I7Þ ¼
Xnl

k¼1

Z zk

zk�1

rkð1; z; z
2; z3; z4; z6Þdz, (8)

where rk is the material density of the kth layer. In Eq. (5), Nxx; Nyy and Nxy denote the constant
in-plane edge loads. Both the Navier-type and Levy-type solutions of Eqs. (5) and (6) can be
found in Refs. [14,16], respectively.

The principle of virtual work equation can be obtained from Eqs. (5)–(8) in the following form:Z t

0

Z
A

ðd�0ab
T
½A��0ab þ d�0ab

T
½B�k0

ab þ d�0ab
T
½E�k2

ab þ dk0
ab

T
½B��0ab þ dk0

ab
T
½D�k0

ab þ dk0
ab

T
½F �k2

ab

þ dk2
ab

T
½E��0ab þ dk2

ab
T
½F �k0

ab þ dk2
ab

T
½H�k2

ab þ dgs
a
T
½As�gs

a þ dgs
a
T
½Ds�ks

a

þ dks
a
T
½Ds��s

a þ dks
a
T
½Fs�ks

aÞdAdt þ

Z t

0

Z
A

qdw0 dAdt þ

Z t

0

Z
A

½G�T½N�½G�dAdt

¼

Z t

0

Z
A

I1ð
€u0
xdu0

x þ
€u0
ydu0

y þ
€w0dw0Þ þ I2ð €Cxdu0

x þ
€Cydu0

y þ
€u0
xdCx þ

€u0
ydCyÞ

�

þ
�4I4

3h2

� �
ð €fxdu0

x þ
€fydu0

y þ
€u0
xdfx þ

€u0
ydfyÞ

þ
�4I5

3h2

� �
ð €Cxdfx þ

€Cydfy þ
€fxdCx þ

€fydCyÞ

þI3ð €CxdCx þ €CydCyÞ þ
16I7

9h4

� �
ð €fxdfx þ

€fydfyÞ

�
dAdt, ð9Þ

where ½G� ¼ ½w0
;x w0

;y�
T and ½N� is a matrix containing the inplane edge loads.
3. Finite element approximation

A nine-node isoparametric quadrilateral finite element is developed on the basis of a refined
higher-order plate theory as discussed in the previous section. The element displacement function
approximations can be expressed as

u0
x ¼

Xn

i¼1

Niu
0i
x ; u0

y ¼
Xn

i¼1

Niu
0i
y ; w0 ¼

Xn

i¼1

Niw
0i; Cx ¼

Xn

i¼1

NiCi
x,

Cy ¼
Xn

i¼1

NiCi
y; fx ¼

Xn

i¼1

Nif
i
x; fy ¼

Xn

i¼1

Nif
i
y, ð10Þ

where Ni; i ¼ 1; . . . ; n ¼ 9; are the interpolation functions. Knowing the generalized displacement
vector ðU ðeÞ ¼ ½N�ðeÞfdgðeÞÞ at all points within the element ‘e’, the generalized mid-surface strains at
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any point given by Eq. (2) can be expressed in terms of nodal displacements as follows:

�0ðeÞab ¼ ½B0
� �
ðeÞfdgðeÞ; k0ðeÞ

ab ¼ ½B0
k�

ðeÞfdgðeÞ; k2ðeÞ
ab ¼ ½B2

k�
ðeÞfdgðeÞ,

gsðeÞ
a ¼ ½Bs

��
ðeÞfdgðeÞ; ksðeÞ

a ¼ ½Bs
k�
ðeÞfdgðeÞ, ð11Þ

where ½B0
� �; ½B

0
k�; ½B

2
k�; ½B

s
�� and ½Bs

k� are generated strain–displacement matrices.
One basic problem associated with the use of standard interpolation of the strains for the

transverse shear components is that the element locks when it is thin. The reason for this locking is
that the element, when loaded in pure bending, will exhibit spurious transverse shear energy. In
order to overcome the shear locking, Huang and Hinton [23] proposed assumed interpolations for
the shear strain to develop a nine-node assumed strain Mindlin plate bending element. In this
paper, the same interpolation scheme is used to develop the nine-node plate bending element
based on a refined higher-order theory. According to the Kirchhoff–Love hypothesis, the shear
strains are insignificant in thin plate situations. Hence, the following conditions should apply in
both global and local coordinate systems:

gs
a ¼

gxz

gyz

" #
¼

Cx þ w;x

Cy þ w;y

" #
����40, (12)

gxz
gZz

" #
¼

Cx þ w;x

CZ þ w;Z

" #
����40. (13)

The polynomial terms for Cx; w;x; CZ and w;Z in a nine-node Lagrange element are given by

Cx ¼ f ð1; x; Z; xZ; x2; Z2; x2Z; xZ2; x2Z2Þ,

w;x ¼ f ð1; x; Z; xZ; Z2; xZ2Þ,

CZ ¼ f ð1; x; Z; xZ; x2; Z2; x2Z; xZ2; x2Z2Þ,

w;Z ¼ f ð1; x; Z; xZ; x2; x2ZÞ. ð14Þ

From Eq. (14), it is seen that the terms for Cx and w;x and for CZ and w;Z do not match. Hence, the
substitute strain fields [23] are introduced as

gxz ¼ p1 þ p2xþ p3Zþ p4xZþ p5Z
2 þ p6xZ

2,

gZz ¼ q1 þ q2xþ q3Zþ q4xZþ q5x
2
þ q6x

2Z. ð15Þ

A constrained functional [23] is introduced to replace the total potential energy ðPÞ

expression as

P ¼ Pþ

Z
A

l13ðgxz � gxzÞdA þ

Z
A

l23ðgZz � gZzÞdA, (16)
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where l13 and l23 are Lagrangian multipliers. The substitute shear strain fields [23,24] are
chosen as

gxz ¼
X2

i¼1

X3

j¼1

PiðxÞQjðZÞg
ij
xz,

gZz ¼
X3

i¼1

X2

j¼1

QiðxÞPjðZÞg
ji
Zz,

where

Q1ðzÞ ¼ zð1þ zÞ=2; Q2ðzÞ ¼ ð1� z2Þ; Q3ðzÞ ¼ zðz � 1Þ=2,

P1ðzÞ ¼ ð1þ z=sÞ=2; P2ðzÞ ¼ ð1� z=sÞ=2; ðz ¼ x; ZÞ, ð17Þ

in which s ¼ 0:577; gij
xz and gji

Zz are the m 
 n unknown substitute shear strain parameters
associated with two sets of m 
 n sampling points ðx̂i; ẐjÞ and ( �xj; �Zi) (see Fig. 2 for location of
sampling points).

In order to eliminate locking, the following equations are obtained:

gxzðx̂i; ẐjÞ ¼ gxzðx̂i; ẐjÞ; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n, (18)

gZzð �xj; �ZiÞ ¼ gZzð �xj; �ZiÞ; i ¼ 1; . . . ; n; j ¼ 1; . . . ;m. (19)

The tensor transformation is used to get gxz and gyz from gxz and gZz; respectively, as given
by Eq. (17). For further details, see Refs. [23,24]. For implementation purpose, gs

a in Eq. (9) is
replaced by gs

a; where gs
a is the substitute shear strains to remove spurious zero energy modes.

Hence, the substitute shear strain gs
a is given by

gsðeÞ
a ¼ ½B

s

��
ðeÞfdgðeÞ, (20)

where ½B
s

��
ðeÞ is generated strain–displacement matrix.
1 2

4

567

98

1 2 3

4

5
67

8
9

s s s

s
ξξ

ηη

3(a) (b)

Fig. 2. Location of sampling points for shear interpolation in a nine-node assumed strain element (a) gij
xz and (b) gji

Zz;
s ¼ 0:577:
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For arbitrary value of virtual displacements, Eq. (9) finally leads to the following assembled
equations:

½M�f €Dg þ ½K �fDg ¼ fFg þ lb½Kg�fDg. (21)

Here the unknown vector fDg is generated by the assemblage of element degrees of freedom
fdgTe ; e ¼ 1; . . . ; total degrees of freedom in the region R: lb denotes the buckling parameter
(a function of the constant in-plane edge loads Nxx; Nyy or Nxy). The assembled stiffness, mass
and buckling matrices for vibration and buckling analysis are

½K � ¼
X

e

Z
Ae

½½B0
� �

T½A�½B0
� � þ ½B0

� �
T½B�½B0

k� þ ½B0
� �

T½E�½B2
k� þ ½B0

k�
T½B�½B0

� � þ ½B0
k�

T½D�½B0
k�

þ ½B0
k�

T½F �½B2
k� þ ½B2

k�
T½E�½B0

� � þ ½B2
k�

T½F �½B0
k� þ ½B2

k�
T½H�½B2

k� þ ½B
s

��
T½As�½B

s

��

þ ½B
s

��
T½Ds�½Bs

k� þ ½Bs
k�

T½Ds�½B
s

�� þ ½Bs
k�

T½Fs�½Bs
k��dA, ð22Þ

½M� ¼
X

e

Z
Ae

½N�T½MI �½N�dA, (23)

½Kg� ¼
X

e

Z
Ae

½X �T½N�½X �dA, (24)

where ½X � ¼ ½N ;x N ;y�
T; ½MI � is the mass matrix containing inertia terms and fFg is the column

vector containing the boundary and body force contributions.
A 3
 3 Gauss–Legendre rule (i.e. full integration scheme) is employed to integrate bending,

membrane, shear and inertia terms in the energy expressions for the nine-node element.
4. Numerical results and discussions

Numerical results are presented to evaluate the performance characteristics of the newly
developed plate bending element in the buckling and free vibration analysis of initially stressed
composite sandwich plates. Validation studies on isotropic and laminated composite are
undertaken before carrying out sandwich plate analysis. The following boundary conditions are
adopted the analysis: Simply supported (S) (for cross ply): u0

x ¼ w0 ¼ Cx ¼ fx ¼ 0 at y ¼

0; b; u0
y ¼ w0 ¼ Cy ¼ fy ¼ 0 at x ¼ 0; a; (S) (for angle ply): u0

y ¼ w0 ¼ Cx ¼ fx ¼ 0 at y ¼

0; b; u0
x ¼ w0 ¼ Cy ¼ fy ¼ 0 at x ¼ 0; a; Clamped (C): u0

x ¼ u0
y ¼ w0 ¼ Cx ¼ fx ¼ Cy ¼ fy ¼ 0

at x ¼ 0; a and y ¼ 0; b:
Firstly, a stability analysis is carried out on isotropic simply supported square plates ðn ¼ 0:30Þ

to investigate the convergence of the present plate bending element. Table 1 compares the present
results on critical buckling loads (N ¼ Nxxa2=p2D; D ¼ Eh3=12ð1� n2Þ), for a=h ¼ 5–100 with the
analytical solution [15]. From the results, it can be concluded that the present results converge
towards the analytical solutions on the refinement of the mesh densities in the full plate.

The natural frequencies ðo2rha4=DÞ
1=2 of a clamped square plate (isotropic) under biaxial

tension Nxxa2=p2DðNxx ¼ NyyÞ; where D is Eh3=12ð1� n2Þ; are later considered to check the
numerical accuracy of the approach. The results from three mesh sizes (4
4, 6
6, 8
8) in the full
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Table 2

The natural frequencies ðo2rha4=DÞ
1=2 for a clamped square plate under biaxial tension

Source Mesh Nxxa2=p2D

5 10 30

Present (4
4) 49.608 59.936 89.259

(6
6) 49.551 59.887 89.209

(8
8) 49.540 59.878 89.202

Dickinson [31] 49.580 59.925 89.272

Table 3

Convergence of the normalized critical buckling loads N ¼ Nxxa2=h3E2 for a simply supported square bidirectional

composite plates (0/90/90/0) with a=h ¼ 10 under uniaxial compression

Nodes per side ðE1=E2Þ
a

20 40

5 1.030 1.029

9 1.019 1.019

13 1.018 1.019

aExact solutions [12] for E1=E2 ¼ 20 and 40 are 15.0191 and 22.8807, respectively.

Table 1

Convergence of critical buckling loads N ¼ Nxxa2=p2D for a simply supported square plate under uniaxial compression

Source Nodes per side a=h

5 10 20 50 100

Present 9 3.2676 3.7896 3.9477 3.9941 4.0002

13 3.2658 3.7872 3.9450 3.9912 3.9975

17 3.2656 3.7867 3.9445 3.9901 3.9939

Analytical [15] — 3.2653 3.7865 3.9443 3.9909 3.9977
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plate are compared with the analytical solution [31] in Table 2. From the results, it can be inferred
that the present solutions are in excellent agreement with the series solution [31]. The frequency
increases with an increase in the stiffness of the plate as expected.

Again, a convergence study is carried out on the stability analysis of laminated composite
square plates with cross-ply lay-up (0/90/90/0). The material and geometry of the square plate
considered here are [12]: E1=E2 ¼ 40, G12=E2 ¼ G13=E2 ¼ 0.6, G23=E2 ¼ 0.5, n12 ¼ 0.25 and
a=h ¼ 10. The present results from full plate discretization with 5, 9 and 13 nodes per side are
normalized with exact solution [12] in Table 3. The present finite element formulation gives results
within 2% of the exact solution on refinement of mesh sizes as seen from the results.
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Table 4

Effect of the degree of orthotropy on critical buckling loads N ¼ Nxxa2=h3E2 for a simply supported square

bidirectional symmetric composite plates with a=h ¼ 10 under uniaxial compression

Source Number of layers E1=E2

3 10 20 30 40

Present 3 5.3905 9.8336 14.8906 18.8778 22.1194

Exact [12] 5.3044 9.7621 15.0191 19.3040 22.8807

HSDT [17] 5.3933 9.9406 15.2980 19.6740 23.3400

CLPT [17] 5.7538 11.4920 19.7120 27.9360 36.160

Present 5 5.4072 10.0828 15.7555 20.5078 24.5588

Exact [12] 5.3255 9.9603 15.6527 20.4663 24.5929

HSDT [17] 5.4096 10.1500 16.0080 20.9990 25.3080

CLPT [17] 5.7538 11.4920 19.7120 27.9360 36.1600

Present 9 5.4126 10.1732 16.0807 21.1341 25.5112

Exact [12] 5.3352 10.0417 15.9153 20.9614 25.3436

HSDT [17] 5.4313 10.1970 16.1720 21.3150 25.7900

CLPT [17] 5.7538 11.4920 19.7120 27.9360 36.1600
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In order to study the effect of individual layers on the critical buckling loads of symmetric
composite laminates, a finite element mesh ð6
 6Þ in a full plate is employed. The following
dimensionless orthotropic material properties (typical of high-modulus graphite-epoxy) are used
[12]: E1=E2 ¼ variable;G12=E2 ¼ G13=E2 ¼ 0:6;G23=E2 ¼ 0:5 and n12 ¼ 0:25: The present results
are compared with exact solution [12], HSDT [17] and CLPT [17] in Table 4. It is seen that the
present results are in very good agreement with the exact [12] and analytical solutions [17]. As
expected, the CLPT overpredicts critical buckling loads for thick plates (a=h ¼ 10). The shear
deformation effect is more pronounced for a material with a high degree of anisotropy as seen
from the increasing buckling loads with an increase of E1=E2 ratios.

The validation problem on sandwich panels includes simply supported square sandwich plates
[0/90/0/90/0/core]s with the following material characteristics [32]: Face sheets: EL=ET ¼ 19;
GLT=ET ¼ 0:52; GTT=ET ¼ 0:338; nLT ¼ 0:32; nTT ¼ 0:49: Honeycomb titanium core: E1=ET ¼

3:2
 10�5; E2=ET ¼ 2:9
 10�5; E3=ET ¼ 0:4; G12=ET ¼ 2:4
 10�3; G13=ET ¼ 7:9
 10�2;
G23=ET ¼ 6:6
 10�2; n12 ¼ 0:99; n13 ¼ n23 ¼ 3
 10�5; where subscript L is the direction of
fibers, T is the transverse direction, subscripts 1,2,3 ¼ the x, y and z directions; nLT ¼ the major
Poisson’s ratio. From the numerical experiments, it is found that the results from a mesh of 13
nodes per side in a full plate give satisfactory solutions for sandwich problems. The present results
along with exact solution [32] are shown in Table 5 for a=h ¼ 10 and 20 with 2hf =h varied between
0.05 and 0.2, where hf is the thickness of the face sheets. It can be concluded that the present
results are in excellent agreement with the exact solution.

Based on the foregoing convergence and validation studies, it can be concluded that the present
finite element solutions give reliable results for isotropic, laminated and composite sandwich plate
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Table 5

Critical buckling stresses (sra
2=ET h2) for uniaxially loaded, simply supported composite sandwich plates

Source Nodes per side 2hf =h

0.05 0.10 0.15 0.20

a=h ¼ 10

Present 13 2.2940 3.8540 4.9690 5.8080

Exact [32] 2.2081 3.7385 4.8307 5.6721

a=h ¼ 20

Present 13 2.5761 4.7160 6.5044 8.0086

Exact [32] 2.5534 4.6460 6.4401 7.9352
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problems. For the remaining problems, a 6
6 mesh in full plate will be considered. The structural
sandwiches considered in the remaining studies have square planform with face sheets of 8 plies
of Graphite/Epoxy (GE) placed symmetrically about a poly-vinyl chloride (PVC) foam core.
The material characteristics of the face sheets and the core are given by: Face sheets [27]: EL ¼

128GPa; ET ¼ 11:0GPa; nLT ¼ 0:25; GLT ¼ 4:48GPa; G13 ¼ 4:48GPa; G23 ¼ 1:53GPa; rf ¼

1:5
 103 kg=m3: HEREX C70.130 Core [27]: Ec ¼ 103:63MPa; Gc ¼ 50MPa; nc ¼ 0:32; rc ¼

130 kg=m3:
This example involves the effect of face thickness to overall thickness ratio on the critical

buckling stress and fundamental frequency of initially stressed composite sandwich plate.
Sandwich panels are assumed to be simply supported under uniaxial stress fields. The results from
the present formulation are shown in Fig. 3(a). For panels with h=a ¼ 0:05–0.20, as the thickness
ratio of the face sheets, 2hf =h increases from 0.05 to 0.2, the critical compressive stress
ðsra

2=ET h2
Þ increases. The reason for the increase in the critical buckling stress is due to the

contribution from the stiff face sheets to resist more in-plane loads. After determining the critical
buckling stress, a series of vibration analyses are carried out to determine the fundamental
frequency ðo2rf a4=ET h2

Þ
1=2 of the square plate with a=h ¼ 10 under in-plane stresses expressed as

a fraction of the critical buckling stress. The results are shown in Fig. 3(b) which shows that as the
in-plane stress approaches the buckling stress, the frequency of the plate decreases to zero. For
panels with h=a ¼ 0:10; as the thickness ratio of the face sheets, 2hf =h; increases from 0.05 to 0.2,
the fundamental frequency decreases. As the plate becomes heavier in weight, the frequency value
decreases. Thus, there is a trade-off between stiffness, buckling and mass effects on the
fundamental frequency.

This example deals with the effect of stacking sequence on the buckling and free vibration of
uniaxially stressed simply supported composite sandwich plates. Three stacking sequences
½0=0=0=0=core�s; ½0=45=� 45=90=core�s and ½0=90=0=90=core�s are taken. As seen in Fig. 4(a), for
a=h ¼ 10; and 2hf =h from 0.05 to 0.20, the buckling stress increases with the increase of 2hf =h:
Thus, the stiffer plate offers higher buckling stress. The sandwich plate with ½0=0=0=0=core�s
shows higher buckling stress than ½0=90=0=90=core�s and ½0=45=� 45=90=core�s: This is due to the
applied in-plane load is in the longitudinal direction of the fibers (stronger) in the sandwich plate
with ½0=0=0=0=core�s: This shows that the stacking sequence effects the critical buckling stress in a
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Fig. 3. Effect of thickness ratios on (a) critical buckling stresses (sra
2=ET h2) and (b) fundamental frequencies

ððo2rf a4=ET h2
Þ
1=2

Þ of composite sandwich plates; —— 2hf =h ¼ 0:05; ���� 2hf =h ¼ 0:10; �:� :� 2hf =h ¼ 0:15;
::::::: 2hf =h ¼ 0:20:
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composite sandwich plate than isotropic plates. The designer can get the desired buckling stresses
by varying the stacking sequence in a composite sandwich plate. Again the natural frequencies
ðo2rf a4=ET h2

Þ
1=2 for a square plate with a=h ¼ 10 and 2hf =h ¼ 0:20 are determined under a series

of in-plane buckling stresses as shown in Fig. 4(b). Similarly, the fundamental frequencies show
increasing trend with the increase of critical buckling stresses. The positive critical buckling stress
denotes the tensile stress which increases the stiffness of the plate. Hence, the presence of tensile
stresses increases the fundamental frequencies in the present case.

This example includes the effect of boundary conditions on the critical buckling stress and
fundamental frequencies of uniaxially stressed composite sandwich plates. The results from the
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Fig. 4. Effect of stacking sequence on (a) critical buckling stresses (sra
2=ET h2) and (b) fundamental frequencies

ððo2rf a4=ET h2
Þ
1=2

Þ of composite sandwich plates; —— ½0=0=0=0=core=0=0=0=0�; ���� ½0=45=� 45=90=core=90=
�45=45=0�;�:� :� ½0=90=0=90=core=90=0=90=0�:
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present formulation are shown in Fig. 5(a) for composite sandwich plates under in-plane edge
loads. The boundary conditions SSSS, CCCC, CFFF, CFCF and CSCS denote the sides (y ¼ 0
and x ¼ 0–a; x ¼ a and y ¼ 0–a; y ¼ a and x ¼ 0–a; x ¼ 0 and y ¼ 0–a) where S, C and F

indicate simply supported, clamped and free edge conditions. From Fig. 5(a), it is seen that CCCC
has highest buckling load among all the boundary conditions, which is about 5 to 7 times higher
than its CFFF counterpart, depending on the plate thickness ratios (2hf =h). It can also be
observed that the critical buckling stress ðsra

2=ET h2
Þ increases with the increase of 2hf =h: The

reason may be due to the coupling effects between the membrane, bending and shear terms
contributed from GE material in the skin. Hence, the stiff plates should be analysed carefully for
stability considerations. Again the fundamental frequencies ðo2rf a4=ET h2

Þ
1=2 for a square plate
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Fig. 5. Effect of boundary conditions on (a) critical buckling stresses (sra
2=ET h2) and (b) fundamental frequencies

ððo2rf a4=ET h2
Þ
1=2

Þ of composite sandwich plates; —— SSSS; ���� CCCC; �:� :� CSCS; ::::::: CFCF ; �þ�þ

� CFFF :
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with a=h ¼ 10 and 2hf =h ¼ 0:20 are determined under a series of in-plane buckling stresses as
shown in Fig. 5(b). CFFF and CFCF do not show any increase in fundamental frequencies under
tensile stresses. The reason may be that the free edges are loaded in tension, without contributing
much to stability matrix.

In the last example, the effect of various in-plane loads on the critical buckling stresses and
fundamental frequency of composite sandwich plates is investigated. The composite sandwich
plate is simply supported with a ¼ b; a=h ¼ 10 and 2hf =h ¼ 0.05. The results from the present
investigation are shown in Fig. 6(a) for buckling stresses (sra

2=ET h2) depending on the types of
in-plane loads applied to the sandwich panel. The inplane loads are classified into uniaxial
compressive stress in x-direction (Uniaxial-x), Uniform shear (Shear), Biaxial compressive stresses
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Fig. 6. Effects of various inplane stresses on (a) critical buckling stresses (sra
2=ET h2) and (b) fundamental frequencies

ððo2rf a4=ET h2
Þ
1=2

Þ of composite sandwich plates; —— Uniaxial-x, ���� Biaxial, �:� :� Combined, �þ�þ

Uniaxial-x and shear, :::::: Shear.
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(Biaxial), Uniaxial compression in x-direction and shear (Uniaxial-x and Shear) and Combination
of biaxial compression and Shear (Combined). The effects of various thickness to side ratios on
critical buckling stresses are also shown in Fig. 6(a). As expected, the critical buckling stress in
sandwich panels under shear is the highest among all inplane stresses, which is also true as that for
isotropic plates. The composite sandwich plate under combined loading gives the lowest critical
buckling stresses. The reason is the coupling effects between compressive and shear loads on the
sandwich panels. Also, the thinner plates possess higher buckling loads than thicker plates, which
is also the same as that of isotropic plates, as seen in Example 1. Again, the fundamental
frequencies ðo2rf a4=ET h2

Þ
1=2 for a square plate with a=h ¼ 10 and 2hf =h ¼ 0:05 are determined
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under a series of in-plane buckling stresses as shown in Fig. 6(b). The fundamental frequencies
show increasing trend with the increase of critical buckling stresses except for Uniaxial-x and
shear stresses. In case of Uniaxial-x and shear, the fundamental frequency shows increasing trend
up to 2 times of the critical buckling stress. The change in fundamental frequency shows the
damage in the panel under tensile stresses and shear stresses, which are 3 times of the critical
buckling stresses.
5. Closure

In this paper, a shear deformable plate bending element is developed based on a refined third-
order theory to analyse buckling and free vibration of initially stressed composite sandwich plates.
An assumed strain concept is applied to remove shear locking and spurious zero energy modes in
the finite element formulation. A consistent mass matrix is incorporated to preserve the total
kinetic energy of the system. Full integration rather than uniform reduced integration is carried
out along with the assumed strain concept to integrate various terms in the energy expressions.
The developed nine-node plate bending element is validated for isotropic, laminated and
composite sandwich plates for generic validation studies. Several examples are presented to show
the effects of parameters like thickness ratios, stacking sequence, boundary conditions and types
of inplane loads on the critical buckling stresses and fundamental frequencies.
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